Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Front Microbiol ; 13: 1024104, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2142119

RESUMEN

Since the outbreak of COVID-19, hundreds of millions of people have been infected, causing millions of deaths, and resulting in a heavy impact on the daily life of countless people. Accurately identifying patients and taking timely isolation measures are necessary ways to stop the spread of COVID-19. Besides the nucleic acid test, lung CT image detection is also a path to quickly identify COVID-19 patients. In this context, deep learning technology can help radiologists identify COVID-19 patients from CT images rapidly. In this paper, we propose a deep learning ensemble framework called VitCNX which combines Vision Transformer and ConvNeXt for COVID-19 CT image identification. We compared our proposed model VitCNX with EfficientNetV2, DenseNet, ResNet-50, and Swin-Transformer which are state-of-the-art deep learning models in the field of image classification, and two individual models which we used for the ensemble (Vision Transformer and ConvNeXt) in binary and three-classification experiments. In the binary classification experiment, VitCNX achieves the best recall of 0.9907, accuracy of 0.9821, F1-score of 0.9855, AUC of 0.9985, and AUPR of 0.9991, which outperforms the other six models. Equally, in the three-classification experiment, VitCNX computes the best precision of 0.9668, an accuracy of 0.9696, and an F1-score of 0.9631, further demonstrating its excellent image classification capability. We hope our proposed VitCNX model could contribute to the recognition of COVID-19 patients.

2.
Front Microbiol ; 13: 995323, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2065593

RESUMEN

COVID-19 has caused enormous challenges to global economy and public health. The identification of patients with the COVID-19 infection by CT scan images helps prevent its pandemic. Manual screening COVID-19-related CT images spends a lot of time and resources. Artificial intelligence techniques including deep learning can effectively aid doctors and medical workers to screen the COVID-19 patients. In this study, we developed an ensemble deep learning framework, DeepDSR, by combining DenseNet, Swin transformer, and RegNet for COVID-19 image identification. First, we integrate three available COVID-19-related CT image datasets to one larger dataset. Second, we pretrain weights of DenseNet, Swin Transformer, and RegNet on the ImageNet dataset based on transformer learning. Third, we continue to train DenseNet, Swin Transformer, and RegNet on the integrated larger image dataset. Finally, the classification results are obtained by integrating results from the above three models and the soft voting approach. The proposed DeepDSR model is compared to three state-of-the-art deep learning models (EfficientNetV2, ResNet, and Vision transformer) and three individual models (DenseNet, Swin transformer, and RegNet) for binary classification and three-classification problems. The results show that DeepDSR computes the best precision of 0.9833, recall of 0.9895, accuracy of 0.9894, F1-score of 0.9864, AUC of 0.9991 and AUPR of 0.9986 under binary classification problem, and significantly outperforms other methods. Furthermore, DeepDSR obtains the best precision of 0.9740, recall of 0.9653, accuracy of 0.9737, and F1-score of 0.9695 under three-classification problem, further suggesting its powerful image identification ability. We anticipate that the proposed DeepDSR framework contributes to the diagnosis of COVID-19.

3.
J Cell Mol Med ; 26(13): 3772-3782, 2022 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1868667

RESUMEN

Amid the COVID-19 crisis, we put sizeable efforts to collect a high number of experimentally validated drug-virus association entries from literature by text mining and built a human drug-virus association database. To the best of our knowledge, it is the largest publicly available drug-virus database so far. Next, we develop a novel weight regularization matrix factorization approach, termed WRMF, for in silico drug repurposing by integrating three networks: the known drug-virus association network, the drug-drug chemical structure similarity network, and the virus-virus genomic sequencing similarity network. Specifically, WRMF adds a weight to each training sample for reducing the influence of negative samples (i.e. the drug-virus association is unassociated). A comparison on the curated drug-virus database shows that WRMF performs better than a few state-of-the-art methods. In addition, we selected the other two different public datasets (i.e. Cdataset and HMDD V2.0) to assess WRMF's performance. The case study also demonstrated the accuracy and reliability of WRMF to infer potential drugs for the novel virus. In summary, we offer a useful tool including a novel drug-virus association database and a powerful method WRMF to repurpose potential drugs for new viruses.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Virus , Algoritmos , Biología Computacional/métodos , Reposicionamiento de Medicamentos , Humanos , Reproducibilidad de los Resultados
4.
Front Microbiol ; 13: 740382, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1771047

RESUMEN

Coronavirus disease 2019 (COVID-19) is rapidly spreading. Researchers around the world are dedicated to finding the treatment clues for COVID-19. Drug repositioning, as a rapid and cost-effective way for finding therapeutic options from available FDA-approved drugs, has been applied to drug discovery for COVID-19. In this study, we develop a novel drug repositioning method (VDA-KLMF) to prioritize possible anti-SARS-CoV-2 drugs integrating virus sequences, drug chemical structures, known Virus-Drug Associations, and Logistic Matrix Factorization with Kernel diffusion. First, Gaussian kernels of viruses and drugs are built based on known VDAs and nearest neighbors. Second, sequence similarity kernel of viruses and chemical structure similarity kernel of drugs are constructed based on biological features and an identity matrix. Third, Gaussian kernel and similarity kernel are diffused. Forth, a logistic matrix factorization model with kernel diffusion is proposed to identify potential anti-SARS-CoV-2 drugs. Finally, molecular dockings between the inferred antiviral drugs and the junction of SARS-CoV-2 spike protein-ACE2 interface are implemented to investigate the binding abilities between them. VDA-KLMF is compared with two state-of-the-art VDA prediction models (VDA-KATZ and VDA-RWR) and three classical association prediction methods (NGRHMDA, LRLSHMDA, and NRLMF) based on 5-fold cross validations on viruses, drugs, and VDAs on three datasets. It obtains the best recalls, AUCs, and AUPRs, significantly outperforming other five methods under the three different cross validations. We observe that four chemical agents coming together on any two datasets, that is, remdesivir, ribavirin, nitazoxanide, and emetine, may be the clues of treatment for COVID-19. The docking results suggest that the key residues K353 and G496 may affect the binding energies and dynamics between the inferred anti-SARS-CoV-2 chemical agents and the junction of the spike protein-ACE2 interface. Integrating various biological data, Gaussian kernel, similarity kernel, and logistic matrix factorization with kernel diffusion, this work demonstrates that a few chemical agents may assist in drug discovery for COVID-19.

5.
Frontiers in public health ; 10, 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-1733334

RESUMEN

Objective The main objectives of this study were to use the effect of information framing (different expressions of the same issue, e.g., positive messages and negative messages) to explore key factors that influence the attitude of and intention of the public toward wearing masks and to understand the internal and external factors of intervention on information framing perception. Methods This study performed an online questionnaire survey to explore the influence of demographic characteristics, information framing, social norms, and information credibility on the attitude of the public toward masks and their intention to wear them. Results (1) Information framing had a significant impact on the attitudes of people toward masks and their intention to wear them, and the persuasion effect of gain-framed messages was higher than that of loss-framed messages. (2) Gender, income, occupation, educational background, and residence have no significant difference in attitude and intention to wear masks. There was a significant correlation between age and wearing of masks (p = 0.041 < 0.05). (3) Social norms affected people's perception of information framing and their attitude toward wearing masks, but only the impact of loss-framed messages on intention was significant. (4) Information framing affected people's perception of information credibility, which had a positive impact on their intention to wear masks;however, information credibility only had a significant impact on attitude toward wearing masks under the gain-framed messages and played an intermediary role. Conclusion The impact of information framing on the attitude of people toward masks and their intention to wear them varies. Individuals involved in the publicity of health information related to this issue should pay attention to the influence of information framing and content on the public wearing masks as a means of enhancing public health awareness.

6.
Comput Biol Med ; 140: 105119, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1559652

RESUMEN

BACKGROUND: A new coronavirus disease named COVID-19, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is rapidly spreading worldwide. However, there is currently no effective drug to fight COVID-19. METHODS: In this study, we developed a Virus-Drug Association (VDA) identification framework (VDA-RWLRLS) combining unbalanced bi-Random Walk, Laplacian Regularized Least Squares, molecular docking, and molecular dynamics simulation to find clues for the treatment of COVID-19. First, virus similarity and drug similarity are computed based on genomic sequences, chemical structures, and Gaussian association profiles. Second, an unbalanced bi-random walk is implemented on the virus network and the drug network, respectively. Third, the results of the random walks are taken as the input of Laplacian regularized least squares to compute the association score for each virus-drug pair. Fourth, the final associations are characterized by integrating the predictions from the virus network and the drug network. Finally, molecular docking and molecular dynamics simulation are implemented to measure the potential of screened anti-COVID-19 drugs and further validate the predicted results. RESULTS: In comparison with six state-of-the-art association prediction models (NGRHMDA, SMiR-NBI, LRLSHMDA, VDA-KATZ, VDA-RWR, and VDA-BiRW), VDA-RWLRLS demonstrates superior VDA prediction performance. It obtains the best AUCs of 0.885 8, 0.835 5, and 0.862 5 on the three VDA datasets. Molecular docking and dynamics simulations demonstrated that remdesivir and ribavirin may be potential anti-COVID-19 drugs. CONCLUSIONS: Integrating unbalanced bi-random walks, Laplacian regularized least squares, molecular docking, and molecular dynamics simulation, this work initially screened a few anti-SARS-CoV-2 drugs and may contribute to preventing COVID-19 transmission.

7.
Front Genet ; 12: 749256, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1485051

RESUMEN

The novel coronavirus pneumonia COVID-19 infected by SARS-CoV-2 has attracted worldwide attention. It is urgent to find effective therapeutic strategies for stopping COVID-19. In this study, a Bounded Nuclear Norm Regularization (BNNR) method is developed to predict anti-SARS-CoV-2 drug candidates. First, three virus-drug association datasets are compiled. Second, a heterogeneous virus-drug network is constructed. Third, complete genomic sequences and Gaussian association profiles are integrated to compute virus similarities; chemical structures and Gaussian association profiles are integrated to calculate drug similarities. Fourth, a BNNR model based on kernel similarity (VDA-GBNNR) is proposed to predict possible anti-SARS-CoV-2 drugs. VDA-GBNNR is compared with four existing advanced methods under fivefold cross-validation. The results show that VDA-GBNNR computes better AUCs of 0.8965, 0.8562, and 0.8803 on the three datasets, respectively. There are 6 anti-SARS-CoV-2 drugs overlapping in any two datasets, that is, remdesivir, favipiravir, ribavirin, mycophenolic acid, niclosamide, and mizoribine. Molecular dockings are conducted for the 6 small molecules and the junction of SARS-CoV-2 spike protein and human angiotensin-converting enzyme 2. In particular, niclosamide and mizoribine show higher binding energy of -8.06 and -7.06 kcal/mol with the junction, respectively. G496 and K353 may be potential key residues between anti-SARS-CoV-2 drugs and the interface junction. We hope that the predicted results can contribute to the treatment of COVID-19.

8.
Vaccines (Basel) ; 9(9)2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1417199

RESUMEN

The aims of the study were (1) to explore information framing effect on the public's intention to receive the COVID-19 vaccination and (2) to understand the key factors influencing the intention of COVID-19 vaccinations in China. An online questionnaire survey was conducted to explore the influence of demographic characteristics, individual awareness, social relationship, risk disclosure, perceived vaccine efficacy, and protection duration under the assumptions of information framing. The results showed that (1) the persuasion effect under loss frame was higher than that under gain frame (B = 0.616 vs. 0.552); (2) there was no significant difference between sex, age, income, occupation, educational background and residence for the participants' intention to be vaccinated; whether family members/friends were vaccinated had a strong correlation with their vaccination intention under the gain frame; (3) the higher the understanding of COVID-19 and the compliance with government COVID-19 prevention and control measures were, the higher the vaccination intention was; (4) risk disclosure had the greatest impact on people's COVID-19 vaccination intention; (5) perceived vaccine effectiveness and duration of protection had little effect on people's intention to receive vaccination. The influence of information framing on the intention of COVID-19 vaccination is different. The publicity of relevant health information should pay attention to the influence of information framing and contents on the behavior of public vaccination, so as to enhance public health awareness and promote the vaccination of the whole population.

9.
Sci Rep ; 11(1): 6248, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: covidwho-1142451

RESUMEN

The outbreak of a novel febrile respiratory disease called COVID-19, caused by a newfound coronavirus SARS-CoV-2, has brought a worldwide attention. Prioritizing approved drugs is critical for quick clinical trials against COVID-19. In this study, we first manually curated three Virus-Drug Association (VDA) datasets. By incorporating VDAs with the similarity between drugs and that between viruses, we constructed a heterogeneous Virus-Drug network. A novel Random Walk with Restart method (VDA-RWR) was then developed to identify possible VDAs related to SARS-CoV-2. We compared VDA-RWR with three state-of-the-art association prediction models based on fivefold cross-validations (CVs) on viruses, drugs and virus-drug associations on three datasets. VDA-RWR obtained the best AUCs for the three fivefold CVs, significantly outperforming other methods. We found two small molecules coming together on the three datasets, that is, remdesivir and ribavirin. These two chemical agents have higher molecular binding energies of - 7.0 kcal/mol and - 6.59 kcal/mol with the domain bound structure of the human receptor angiotensin converting enzyme 2 (ACE2) and the SARS-CoV-2 spike protein, respectively. Interestingly, for the first time, experimental results suggested that navitoclax could be potentially applied to stop SARS-CoV-2 and remains to further validation.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Enzima Convertidora de Angiotensina 2/química , Antivirales/química , Ribavirina/química , Glicoproteína de la Espiga del Coronavirus/química , Adenosina Monofosfato/química , Alanina/química , Compuestos de Anilina/química , Evaluación Preclínica de Medicamentos , Genoma Viral , Simulación del Acoplamiento Molecular , SARS-CoV-2/genética , Sulfonamidas/química
10.
Front Genet ; 11: 577387, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-840519

RESUMEN

A new coronavirus called SARS-CoV-2 is rapidly spreading around the world. Over 16,558,289 infected cases with 656,093 deaths have been reported by July 29th, 2020, and it is urgent to identify effective antiviral treatment. In this study, potential antiviral drugs against SARS-CoV-2 were identified by drug repositioning through Virus-Drug Association (VDA) prediction. 96 VDAs between 11 types of viruses similar to SARS-CoV-2 and 78 small molecular drugs were extracted and a novel VDA identification model (VDA-RLSBN) was developed to find potential VDAs related to SARS-CoV-2. The model integrated the complete genome sequences of the viruses, the chemical structures of drugs, a regularized least squared classifier (RLS), a bipartite local model, and the neighbor association information. Compared with five state-of-the-art association prediction methods, VDA-RLSBN obtained the best AUC of 0.9085 and AUPR of 0.6630. Ribavirin was predicted to be the best small molecular drug, with a higher molecular binding energy of -6.39 kcal/mol with human angiotensin-converting enzyme 2 (ACE2), followed by remdesivir (-7.4 kcal/mol), mycophenolic acid (-5.35 kcal/mol), and chloroquine (-6.29 kcal/mol). Ribavirin, remdesivir, and chloroquine have been under clinical trials or supported by recent works. In addition, for the first time, our results suggested several antiviral drugs, such as FK506, with molecular binding energies of -11.06 and -10.1 kcal/mol with ACE2 and the spike protein, respectively, could be potentially used to prevent SARS-CoV-2 and remains to further validation. Drug repositioning through virus-drug association prediction can effectively find potential antiviral drugs against SARS-CoV-2.

11.
Genomics ; 112(6): 4427-4434, 2020 11.
Artículo en Inglés | MEDLINE | ID: covidwho-707714

RESUMEN

It is urgent to find an effective antiviral drug against SARS-CoV-2. In this study, 96 virus-drug associations (VDAs) from 12 viruses including SARS-CoV-2 and similar viruses and 78 small molecules are selected. Complete genomic sequence similarity of viruses and chemical structure similarity of drugs are then computed. A KATZ-based VDA prediction method (VDA-KATZ) is developed to infer possible drugs associated with SARS-CoV-2. VDA-KATZ obtained the best AUCs of 0.8803 when the walking length is 2. The predicted top 3 antiviral drugs against SARS-CoV-2 are remdesivir, oseltamivir, and zanamivir. Molecular docking is conducted between the predicted top 10 drugs and the virus spike protein/human ACE2. The results showed that the above 3 chemical agents have higher molecular binding energies with ACE2. For the first time, we found that zidovudine may be effective clues of treatment of COVID-19. We hope that our predicted drugs could help to prevent the spreading of COVID.


Asunto(s)
Antivirales/metabolismo , Antivirales/farmacología , Evaluación Preclínica de Medicamentos/métodos , Simulación del Acoplamiento Molecular/métodos , SARS-CoV-2/efectos de los fármacos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/metabolismo , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/metabolismo , Alanina/farmacología , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Antivirales/química , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Oseltamivir/metabolismo , Oseltamivir/farmacología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Zanamivir/metabolismo , Zanamivir/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA